TIER 1 ALGEBRA, JANUARY 2023

(1) Let \mathbb{S}_{n} denote the symmetric group on n elements and $\{1,-1\}$ the multiplicative group of order 2 .
(i) Show that sign : $\mathbb{S}_{n} \rightarrow\{1,-1\}$ is the only nontrivial homomorphism from \mathbb{S}_{n} to $\{1,-1\}$.
(ii) Show that $\operatorname{ker}\{\operatorname{sign}\}$, i.e. the alternating group A_{n}, is the only subgroup of \mathbb{S}_{n} of index 2 .
(2) Let $h: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ be the homomorphism

$$
h(x, y, z)=(2 x+y-16 z, 8 x+4 y+2 z, 2 x+y-22 z)
$$

Compute the quotient group $\mathbb{Z}^{3} / h\left(\mathbb{Z}^{3}\right)$ as a direct sum of cyclic groups.
(3) Let G be a group and $H<G, K<G$ two subgroups. Define

$$
H K \stackrel{\text { def }}{=}\{x \in G \mid \text { there exist } h \in H \text { and } k \in K \text { satisfying } h k=x\}
$$

(i) Prove that $H K$ is a subgroup of G if and only if $H K=K H$.
(ii) Give an example, with complete explanation, of a group G and two subgroups $H<G, K<G$ so that $H K$ is not a subgroup of G.
(4) Let $T: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be a linear transformation and let J be an $n \times n$ Jordan block of T with eigenvalue λ. Find the Jordan form of J^{2}. (Hint: consider the cases (i) $\lambda=0$ and (ii) $\lambda \neq 0$.)
(5) Let \mathbb{F}_{3} denote the field of 3 elements, that is, $\mathbb{F}_{3}=(\mathbb{Z} / 3 \mathbb{Z},+, \cdot)$.
(i) How many distinct 1 dimensional subspaces does a vector space of dimension 3 over \mathbb{F}_{3} have? Give a complete explanation of how you reached your answer.
(ii) How many distinct 2 dimensional subspaces does a vector space of dimension 3 over \mathbb{F}_{3} have? Give a complete explanation of how you reached your answer.
(6) Let R be the subring of \mathbb{Q} consisting of all rational numbers of the form a / b where a and b are integers, and b is relatively prime to 35 . Show that R has exactly two maximal ideals and describe these two maximal ideals.
(7) Let $f: R \rightarrow S$ be a surjective ring homomorphism. Prove the following statements:
(i) If $Q \subseteq S$ is a prime ideal then $f^{-1}(Q)$ is a prime ideal of Q containing ker f.
(ii) If $P \subseteq R$ is a prime ideal such that ker $f \subseteq P$ then $f(P)$ is a prime ideal of S.
(iii) There is a bijection between prime ideals of R containing ker f and prime ideals of S.
(8) Let F be an extension field of K, and $u \in F$ algebraic over K of odd degree $2 n+1$. Show that
(a) u^{2} is algebraic over K of degree $2 n+1$, and
(b) $K(u)=K\left(u^{2}\right)$.
(9) Show that these two fields are equal:

$$
\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3}) .
$$

