TIER 1 ALGEBRA, JANUARY 2023

- (1) Let S_n denote the symmetric group on n elements and {1, −1} the multiplicative group of order 2.
 (i) Show that sign : S_n → {1, −1} is the only nontrivial homomorphism from S_n to {1, −1}.
 - (ii) Show that ker{sign}, i.e. the alternating group A_n , is the only subgroup of \mathbb{S}_n of index 2.
- (2) Let $h: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the homomorphism

h(x, y, z) = (2x + y - 16z, 8x + 4y + 2z, 2x + y - 22z).

Compute the quotient group $\mathbb{Z}^3/h(\mathbb{Z}^3)$ as a direct sum of cyclic groups.

(3) Let G be a group and H < G, K < G two subgroups. Define

 $HK \stackrel{\text{def}}{=} \{x \in G \mid \text{ there exist } h \in H \text{ and } k \in K \text{ satisfying } hk = x\}$

- (i) Prove that HK is a subgroup of G if and only if HK = KH.
- (ii) Give an example, with complete explanation, of a group G and two subgroups H < G, K < G so that HK is not a subgroup of G.
- (4) Let $T : \mathbb{C}^k \to \mathbb{C}^k$ be a linear transformation and let J be an $n \times n$ Jordan block of T with eigenvalue λ . Find the Jordan form of J^2 . (Hint: consider the cases (i) $\lambda = 0$ and (ii) $\lambda \neq 0$.)
- (5) Let \mathbb{F}_3 denote the field of 3 elements, that is, $\mathbb{F}_3 = (\mathbb{Z}/3\mathbb{Z}, +, \cdot)$.
 - (i) How many distinct 1 dimensional subspaces does a vector space of dimension 3 over \mathbb{F}_3 have? Give a complete explanation of how you reached your answer.
 - (ii) How many distinct 2 dimensional subspaces does a vector space of dimension 3 over \mathbb{F}_3 have? Give a complete explanation of how you reached your answer.
- (6) Let R be the subring of \mathbb{Q} consisting of all rational numbers of the form a/b where a and b are integers, and b is relatively prime to 35. Show that R has exactly two maximal ideals and describe these two maximal ideals.
- (7) Let f: R → S be a surjective ring homomorphism. Prove the following statements:
 (i) If Q ⊆ S is a prime ideal then f⁻¹(Q) is a prime ideal of Q containing ker f.
 - (ii) If $P \subseteq R$ is a prime ideal such that ker $f \subseteq P$ then f(P) is a prime ideal of S.
 - (iii) There is a bijection between prime ideals of R containing ker f and prime ideals of S.
- (8) Let F be an extension field of K, and $u \in F$ algebraic over K of odd degree 2n + 1. Show that (a) u^2 is algebraic over K of degree 2n + 1, and
 - (b) $K(u) = K(u^2)$.
- (9) Show that these two fields are equal:

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$